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MODEL-COMPLETENESS AND DECIDABILITY OF THE ADDITIVE

STRUCTURE OF INTEGERS EXPANDED WITH A FUNCTION FOR A

BEATTY SEQUENCE

MOHSEN KHANI, ALI N. VALIZADEH, AND AFSHIN ZAREI

Abstract. We introduce a complete axiomatization for the structure Zα = 〈Z,+, 0, 1, f〉
where f : x 7→ ⌊αx⌋ is a unary function with α a fixed transcendental number. This result
fits into the more general theme of adding traces of multiplication to integers without losing
decidability. When α is either a quadratic number or an irrational number less than one, similar
decidability results have been already obtained by applying heavy techniques from the theory
of autamota. Nevertheless, our approach is based on a clear axiomatization and involves only
elementary techniques from model theory.

1. Introduction

The subject of this study is the structure Zα = 〈Z,+, 0, 1, f〉 which contains the integer

addition together with a trace of multiplication; namely the function ⌊αx⌋ whose range is the

Beatty sequence with modulo α.

Our results lie in the intersection of two active research programs. On the one hand, it relates

to the recent works on decidability of the expansions of 〈Z,+〉 as well as their classification

either as stable structures, as in [C18] and [CP18], or unstable structures as in [KS17]. In this

sense, Zα is an instance of an unstable yet decidable expansion of 〈Z,+〉.

On the other hand, Zα is definable in the structure Rα = 〈R, <,+, 0,Z, αZ〉 which lies in

the more general theme of research studying the expansions of real line with specific discrete

additive subgroups. Most relevant to our work is Hieronymi’s theorem in [H16] which shows, for

the special case of a quadratic α, that the theory of the structure Rα—and as a result Zα—is

decidable. Decidability is proved there by showing that Rα is definable in the monadic second-

order structure 〈N, P (N),∈, x 7→ x+ 1〉 which was already known to be decidable ([B62]).

The results on Zα have been recently generalized in several directions. In particular, it is

shown in [H21] that the common theory of the structures Zα is decidable when α ranges over

irrational numbers less than one. The proof appeared there applies heavy techniques from the
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theory of automata; wherein a main feature is designing a Büchi automaton which can perform

addition over Ostrowski numeration systems.

The current study is indeed along similar lines to a result by the first and the third authors in

[KZ22] in which they applied only simple techniques of model theory to provide an alternative

proof for the decidability of Zα in the case that α is the golden ratio.

In the present paper, by applying elementary tools in model theory and number theory, we

prove that the theory of Zα is decidable when α is a transcendental number. To our knowledge,

in the latter case (transcendental α) nothing is known about the decidability of the more

general structure Rα, and we believe that our result forms an important step towards solving

that problem as well.

We will discuss the definable sets of Zα later in Subsection 5.2. But, to have a general picture

of the model theory involved in Zα, note in particular that Zα is a model of the theory of Z-

groups, or Presburger arithmetic without an order, and hence it defines all congruence classes

or arithmetic progressions. The latter sets are a typical example of definable sets in Zα with a

somewhat “structured” nature.

On the other hand, there are definable sets in Zα with a “random” behaviour, and these

sets are typically the subsets of Zα defined using the powers of the function f . An aspect of

this randomness is reflected in the fact that these sets do not contain an infinite arithmetic

progression (see Subsection 5.2 for more details). However, this random behaviour is actually a

consequence of definability of a liner order which turns out to be dense by means of Kronecker’s

approximation lemma (Fact 3.1).

When applied to the simple case of an irrational number α, Kronecker’s lemma says that the

set of decimal parts of the sequence {αn : n ∈ ω} is dense in the unit interval (0, 1).

However, as it will be expanded later, we need the full strength of Kronecker’s lemma to

tackle the case of a transcendental number. In fact, when α is transcendental all different

powers of f , and hence all different powers of α, take an independent part in creating the

random behaviour. This in fact contrasts the case of a quadratic α where this randomness is

actually weaker, mainly because all terms of the language reduce to a linear form; for example,

f 2(x) is equal to f(x) + x− 1 when α is the golden ratio (see [KZ22]).

The following motivating propositions–that won’t directly be used in the paper–reflect the

basic idea on which most of our arguments rely. To solve a given system of equations in Zα we

turn, whenever possible, equations into inequalities in terms of the decimal parts. The solution

to the system will then be obtained by an application of k-dimensional Kronecker’s lemma, Fact

3.1, asserting the density of the set {([β1n], . . . , [βkn])}n∈N in (0, 1)k for a Q-linear independent

set of real numbers β1, . . . , βk. Recall that the decimal part of a real number α is denoted by

[α] , namely [α] := α− ⌊α⌋.
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Proposition 1.1. Suppose that α is an irrational number and let a and b be integers. Then,

(1) a is in the range of f if and only if
[

a
α

]

is greater than 1− 1
α
. Moreover, a = f(b) implies

that a =
⌊

b
α

⌋

+ 1. If α is positive and less than 1, then f is a surjection.

(2) f(a + b) = f(a) + f(b) + ℓ for some ℓ ∈ {0, 1}, where ℓ is equal to 0 if and only if

[αa] + [αb] < 1.

Proof. Part (2) is obvious, for part (1) use the fact that a = f(b) implies αb− 1 < a < αb. �

Notice that the language L that we will be working in won’t contain the congruence relations
m
≡, yet the following proposition in given only for its motivating aspect.

Proposition 1.2. The following system of equations has infinitely many solutions in Z,
{

x
m
≡ i

f(x)
n
≡ j.

Proof. It is easy to verify that f(x)
n
≡ j if and only if [α

n
x] ∈ ( j

n
, j+1

n
). Hence, to solve the

system above, it suffices to find y such that
[

(my + i)α

n

]

∈ (
j

n
,
j + 1

n
).

If j+1
n
> [ i

n
α], by Fact 3.1 we choose y such that

[mα

n
y
]

< 1− [
i

n
α], and

j

n
−

[

i

n
α

]

<
[mα

n
y
]

<
j + 1

n
−

[

i

n
α

]

.

In the case that j+1
n
< [ i

n
α], again by Fact 3.1 we choose y such that
[mα

n
y
]

> 1−

[

i

n
α

]

, and

1 +
j

n
−

[

i

n
α

]

<
[mα

n
y
]

< 1 +
j + 1

n
−

[

i

n
α

]

.

�

We will gradually present a theory Tα for Zα, where we introduce each axiom scheme after

proving the desired property for Zα. So each of the sections below will contain axioms that

ensure a partial model-completeness for the final theory Tα. We finish by our Main Theorem

showing that Tα is model-complete and this suffices for Zα to be decidable. We find it helpful

to give a summary of our arguments leading to the proof of model-completeness as follows.

Step 1. We treat certain relations among the decimal parts as first-order L-formulas (Section

2).
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Step 2. We divide systems of equations in L into two main categories of non-algebraic (Section

3) and algebraic formulas (Section 4).

Step 3. We use an extended version of Kronecker lemma (Theorem 3.3) to show that solvabil-

ity of a system of non-algebraic formulas is equivalent to a quantifier-free L-formula

(Theorem 3.9).

Step 4. For two models M1 ⊆ M2, we show that the solution, in M2, of an algebraic system

involving only a single variable and with parameters in M1, belongs also to M1 (Lemma

4.3). This implicitly shows that a substructure of a model of Tα is closed under taking

inverse of different powers of f .

Step 5. We use a technical trick (Lemma 4.7) to show that an algebraic system which contains

more than two variables reduces to a non-algebraic system of smaller number of variables

(Subsections 4.2 and 4.3).

Our last section will contain some additional observations and remarks.

Convention.

(1) α is a fixed transcendental number.

(2) We will be working in the language L = {+,−, 0, 1, f} and unless we state otherwise

all formulas are assumed to be in L. In particular, all axioms and axiom schemes are

L-formulas.

(3) When there is no mention of a model or a theory, the lemmas and theorems below

concern the structure Zα, and hence the variables and parameters will range over the

set of integers Z.

(4) We occasionally use a finite partial type Γ(x) as a conjunction of L-formulas as well;

that is, we freely use notations like ∃xΓ(x) instead of writing ∃x
∧

ϕ(x)∈Γ(x)

ϕ(x).

A note on overlapping results. Short before submitting this paper, we learnt of a similar

independent work by Günaydin and Özsahakyan uploaded in arXiv [GO22]. The main difference

between the two papers, is that in [GO22] the authors consider the Beatty sequence as a

predicate in the language, where we put the function f = ⌊αx⌋, which is not definable in their

structure. For the same reason, we have to deal with decimals that concern the powers of the

function f where they need only to treat decimals of the linear combinations.

2. Describing decimals in L

Although our language/theory does not literally contain the decimals themselves, similar

observations to Proposition 1.1 show that our theory is capable enough to describe their key

properties in a nice way. In fact, it suffices for L to capture the order and the dense distribution



ADDITIVE INTEGERS WITH A FUNCTION FOR A BEATTY SEQUENCE 5

of these decimals in the spirit of Fact 3.1 below. Through the following two lemmas we first

show to what extent the properties of the decimals are expressible in L.

Lemma 2.1. Let a and b be integers, and n ∈ N with n 6= 0.

(1) There exists a natural number i ∈ {0, . . . , n− 1} such that

f(na) = nf(a) + i.

Indeed f(na) = nf(a) + i if and only if i
n
< [αa] < i+1

n
.

(2) [αa] + [αb] < 1 if and only if f(a+ b) = f(b) + f(b).

(3) [αa] < [αb] is equivalent to f(b− a) = f(b)− f(a).

Proof. Easy to verify. �

The next lemma and its following corollary allow us to work also with rational multiples in

L and hence to compare decimal parts in a more subtle way.

Lemma 2.2. Let a, b and m be integers, and n ∈ N.

(1) There exists a quantifier-free formula ϕ(x, y), depending on m and n, such that Zα |=

ϕ(a, b) if and only if

[αa] <
m

n
[αb] .

(2) Suppose that ℓ1, ℓ2 ∈ Z, then there exists a quantifier-free formula ϕ(x, y), depending on

m,n, ℓ1 and ℓ2, such that Zα |= ϕ(a, b) if and only if

ℓ1 < n [αa] +m [αb] < ℓ2.

Proof. For part (1), first suppose that we have 0 < m < n; other cases can be proved similarly

or else they turn into triviality.

Note that there are natural numbers i and j with 0 ≤ i < n and 0 ≤ j < m such that [αa] ∈

( i
n
, i+1

n
) and [αb] ∈ ( j

m
, j+1

m
). The latter conditions are L-expressible using part (1) of Lemma

2.1. Also, observe that non-trivial cases only happen when i < m and j = i; that is, both [αa]

and m
n
[αb] belong to the same interval ( i

n
, i+1

n
). In this case, using parts (3) and (1) of Lemma

2.1, we can show that n [αa] is less than < m [αb] if and only if f(mb− na) = mf(b)− nf(a).

For part (2), note that, depending on whether m is negative or positive, non-trivial cases

occur only when we have that −m ≤ ℓ1 < ℓ2 ≤ n or 0 ≤ ℓ1 < ℓ2 ≤ n +m, respectively. Then,

apply an argument similar to the proof of part (1). �

The following corollary is a consequence of part (2) of Lemma 2.2.
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Corollary 2.3. Let ℓ1 and ℓ2 be integers, and suppose that ā, b̄, m̄ and n̄ are tuples of integers

of length k. Then, there exists a quantifier-free L-formula ϕ(x̄, ȳ), depending on k, ℓ1, ℓ2, m̄ and

n̄, such that Zα |= ϕ(ā, b̄) if and only if

ℓ1 <

k
∑

i=1

ni [αai] +

k
∑

i=1

mi [αbi] < ℓ2.(2.1)

Notation 2.4. From now on and by injecting suitable variables, we treat all the inequalities

equivalent to those appeared in Lemmas 2.1 and 2.2 and their corollary as first-order L-formulas.

For example, by writing ℓ1 < n [αx]+m [αy] < ℓ2 we mean the quantifier-free L-formula, ϕ(x, y),

obtained in part (2) of Lemma 2.2.

Using our observations so far and by applying our flexible notation, we are able to encode

into our language some of the main features of the decimals involved in the structure Zα.

Remark 2.5. Note again that to a decimal like [αa] nothing can be designated in L. In fact, L

is capable of describing these decimals merely in the cases that they participate in an inequality

in the form of (2.1). However, as we will see, this amount of expressive power suffices for us to

prove our results.

Based on the decimals that appear in our formulas, we consider two major cases in our

argument towards proving model-completeness. In Section 3, we deal with formulas concerning

the decimals of the form [αf i(x)]. We call these formulas non-algebraic (see Definition 3.4)

whose properties appear in Axioms 1, 2 and 3 below.

Section 4 explores the properties of the algebraic formulas. Very briefly put, our algebraic

formulas are very similar to the formula f(x) = a which has finitely many solutions in any

model of Th(Zα) containing the parameter a (and indeed a unique solution when α > 1). This

is in contrast with a formula like [αx] ∈ (0, 1 − [αa]) which, according to Axiom 2 below, is

satisfied by infinitely many elements x.

3. Non-algebraic formulas

As mentioned earlier, some of the essential properties of the function f will be described as

a consequence of Kronecker’s approximation lemma, and our aim is to exploit the full extent

of this fact in our axiomatization. A proof of this theorem can be found in [HW08, Theorem

442].

Fact 3.1 (Kronecker’s Approximation Lemma).

Let n ∈ N be fixed and the real numbers β1, . . . , βn, 1 be linearly independent over Q. Then

the set
{

([β1x], . . . , [βnx]) : x ∈ N
}

is dense in (0, 1)n.
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As an immediate consequence of Kronecker’s lemma, it can be easily checked that Zα is a

model of part (2) of the following axiom, and the first part can be verified similar to part (2)

of Lemma 2.1.

Axiom 1.

(1) For all x1, . . . , xn, there exists a unique j in {0, . . . , n− 1} such that

j <

n
∑

i=1

[αxi] < j + 1.

(2) The relation [αx] < [αy] is a dense linear order.

Remark 3.2. An interesting, but not directly relevant, observation is that each nZ is dense in

Z with respect to the order defined by the decimal parts. More generally, given any congruence

class nZ + i and any interval I = ([αa] , [αb]) ⊂ (0, 1) there are infinitely many integers like c

in that congruence class whose decimal part [αc] belongs to I. This can be proved using the

ideas appeared in the proof of Proposition 1.2.

For given integers a and b, decimals other than [αa] and [αb] also intervene in investigating

formulas like fn(a + b) = fn(a) + fn(b) + ℓ where the exact value of ℓ is determined by the

values of the decimals below:

[αa] , [αb] , [αf(a)] , [αf(b)] , · · · ,
[

αfn−1(a)
]

,
[

αfn−1(b)
]

.

To engage with decimals of the form [αf i(a)], we aim to expand on the idea of the proof of

Proposition 1.2 further as follows: Notice that we let f 0(x) = x. Since α is transcendental,

each finite sequence 1, α, . . . , αn is Q-linearly independent and this fact provides us, through

the following extended version of Fact 3.1, with a more amount of “control” over the decimals of

the form [αf i(x)]. The following theorem concerns the natural numbers and the word “dense”

there has its usual meaning in the reals.

Theorem 3.3 (Extended Kronecker’s Lemma).

For every n ∈ N, the following set of (n+ 1)-tuples is dense in (0, 1)n+1:
{

(

[αa], [αf(a)], [αf 2(a)], · · · , [αfn(a)]
)

: a ∈ N
}

.

Proof. Assume that [αa] ∈
(

k
αm ,

k+1
αm

)

for some m, k ∈ N (m ≥ 2). Then

k

αm−1
< α [αa] <

k + 1

αm−1
.

Now if [α2a] > k+1
αm−1 , then

[αf(a)] =
[

α2a
]

− α [αa] ∈ (0, 1−
k + 1

αm−1
).
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Similarly if [α2a] < k
αm−1 , then

[αf(a)] =
[

α2a
]

− α [αa] + 1 ∈ (1−
k

αm−1
, 1).

Since (0, 1) ⊆ (0, 1 − k+1
αm−1 ) ∪ (1 − k

αm−1 , 1) by applying Kronecker’s lemma to α and α2 it is

possible to find a such that [αa] ∈ (a, b) and [αf(a)] ∈ (c, d) for any a, b, c and d.

By induction and similar to the argument above, to control [αfn(a)] = [αf(fn−1(a))] one

needs to control [αnf(a)]. This is also possible, since [αnf(a)] = [αn+1a− αn [αa]]. Now if

αn [αa] is in an interval ( k
αm ,

k+1
αm ), one can control [αn+1a] so that [αnf(a)] belongs to a any

desired interval. �

This extended Kronecker’s lemma is included in our axioms as following.

Axiom scheme 2. For n ∈ N and any tuples of variables ȳ and z̄ with |ȳ| = |z̄| = n and

[αzi] < [αyi] for each i ∈ {1, . . . , n}, there exist infinitely many x such that
n
∧

i=1

[αyi] < [αf i(x)] < [αzi].

Definition 3.4.

(1) Call a quantifier-free formula θ(x; ȳ) non-algebraic if for some ℓ ∈ Z and tuples of

integers n̄ and m̄ it is equivalent to a formula of the form

(3.1)
n0 [αx] + n1 [αf(x)] + . . .+nk

[

αfk(x)
]

<

m0 [αy0] + . . .+mk [αyk] + ℓ,

where |ȳ| = |n̄| = |m̄| = k + 1.

More generally define a non-algebraic formula θ(x̄; ȳ) with |x̄| = k and |ȳ| = k′ +1 as

a quantifier-free formula which is equivalent to a formula of the following form

ℓ1
∑

i=0

n1i

[

αf i(x1)
]

+ · · ·+
ℓk
∑

i=0

nki

[

αf i(xk)
]

<

k′
∑

i=0

mi [αyi] + ℓ(3.2)

for some ℓ1, . . . , ℓk ∈ N and ℓ,mi, nji ∈ Z.

(2) Let M be an L-structure, A ⊆ M and ā ∈ M . The non-algebraic type of ā over A is

a partial type consisting of all non-algebraic formulas θ(x̄; b̄), with |x̄| = |ā| and b̄ ∈ A,

which are satisfied by ā in M.

Remark 3.5.

(1) Non-algebraic formulas are closed under negation: Since we allow integers to appear in

(3.2), namely the numbers ℓ,mi and nji, the negation of a non-algebraic formula is a

non-algebraic formula as well.
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(2) Note that, to have the L-formula expressing (3.2) above, we need to generalize Corollary

2.3 to obtain formulas with more than two variables; however, this can be done by a

simple induction on the number of variables.

Lemmas 2.1 and 2.2 together with Corollary 2.3 can be used to have a better understanding

about the non-algebraic type of a tuple over a set of parameters. In particular, a non-algebraic

type π(x; b) over a single parameter b determines, among other things, the value of the numbers

ℓi ∈ {0, 1} such that

f(x+ b) = f(x) + f(b) + ℓ1

f 2(x+ b) = f(f(x) + f(b) + ℓ1) = f 2(x) + f(f(b) + ℓ1) + ℓ2

f 3(x+ b) = f(f 2(x) + f(f(b) + ℓ1) + ℓ2)

= f 3(x) + f(f(f(b) + ℓ1) + ℓ2) + ℓ3

....

(3.3)

By our notation, the set of equations above can be rewritten as the following set of inequalities

assuming ℓi = 0 (respectively ℓi = 1).

[αx] + [αb] < 1 (> 1)

[αf(x)] + [α(f(b) + ℓ1)] < 1 (> 1)

[αf 2(x)] + [α(f(f(b) + ℓ1) + ℓ2)] < 1 (> 1)

...
....

Lemma 3.6 below provides a quantifier-free condition for a non-algebraic type to have a

solution. To get the idea of its proof via an example, consider the following inequality in R,

2z0 + 3z1 < m0y0 +m1y1 + 5,

where the appearing coefficients are of no specific importance. Observe that the existence of a

solution (z0, z1) ∈ (0, 1)2 for this inequality is simply equivalent to the requirement that

m0y0 +m1y1 > −5.

Lemma 3.6. Suppose that Γ(x; ȳ) is a finite set of non-algebraic formulas θ(x; ȳ′) each in the

form of (3.1) and with ȳ′ ⊆ ȳ and |x| = 1. Then, there exists a quantifier-free formula χ(ȳ),

depending on the numbers k, ℓ, n̄ and m̄ appearing in the formulas θ ∈ Γ, such that

Zα |= ∀ȳ (∃xΓ(x; ȳ) ↔ χ(ȳ)) .

Proof. In the case that Γ(x; ȳ) only consists of a single formula θ(x; ȳ), let w denote the right

hand-side of the inequality (3.1). Also, for each i ∈ {0, . . . , k} let zi denote [αf i(x)]. Now, fixing
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w, note that the existence of a real-valued solution (z0, · · · , zk) ∈ (0, 1)k+1 for the following

linear inequality
k
∑

i=0

nizi < w + ℓ(3.4)

reduces to whether the latter hyperplane intersects the regions 0 < zi < 1 for i ∈ {0, . . . , k}

in Rk+1. As in the example right before the lemma, the existence of such an intersection is

equivalent to an inequality of the form m′w < ℓ′, or more expanded:

m′
0 [αy0] + . . .+m′

k [αyk] < ℓ′,

where the value of integers m′, m′
i and ℓ′ depend on the numbers ni, mi and ℓ appearing in

(3.1). The latter inequality is the desired quantifier-free formula χ(ȳ). We only need to check

that the existence of a solution (z0, . . . , zk) ∈ (0, 1)k+1 for (3.4) is equivalent to existence of an

integer x with
k
∑

i=0

ni

[

αf i(x)
]

< w + ℓ,

and this can easily be verified using Theorem 3.3.

In the case that Γ(x; ȳ) contains more than one formula, we proceed as above by introducing

the corresponding real variables zi for the decimal part of different powers of f(x), namely the

decimals [αf i(x)]. This time, for each of the formulas θ(x; ȳ′) ∈ Γ we need to consider a distinct

real variable wθ, like the variable w above, and the formula χ(ȳ) must also contain a part for

comparing these wθ’ s through a set of linear inequalities. �

Corollary 3.7. Suppose that Γ(x̄; ȳ) is a finite set of non-algebraic formulas θ(x̄; ȳ′) each in

the form of (3.2) and with ȳ′ ⊆ ȳ. Then, there exists a quantifier-free formula χ(ȳ), depending

on the numbers ℓ1, . . . , ℓk, ℓ,mi, nji appearing in the formulas θ ∈ Γ, such that the following

holds in Zα:

∀ȳ (∃x̄Γ(x̄; ȳ) ↔ χ(ȳ)) .(3.5)

Proof. Using Lemma 3.6 and an induction on the length of x̄. �

Axiom scheme 3. All instances of formula (3.5) above when Γ(x̄; ȳ) and χ(ȳ) range over all

formulas having the properties described in Corollary 3.7.

Notation 3.8.

(1) Let T0 denote the theory of Z-groups (that is Presburger arithmetic without order) in

the language {0, 1,+,−}.

(2) Let Tnalg, reads “T -non-algebraic”, be T0 together with Axioms 1 to 3.
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Theorem 3.9. Suppose that M1 ⊆ M2 are models of Tnalg and let A ⊆M1 and ā ∈M2. Then,

any finite fragment of the non-algebraic type of ā over A is realized in M1.

Proof. According to Axiom 3, the existence of a solution for each finite fragment of the non-

algebraic type of a over A is equivalent to the satisfaction of a quantifier-free formula χ(ȳ) by

a finite tuple b̄ ∈ A. But, χ(b̄) holds in M2 if and only if it holds in M1.

�

For an interesting connection of Tnalg to o-minimality, see Subsection 5.3.

4. Adding algebraic formulas

In this section, we focus on the most general form of a finite set of L-formulas by adding

formulas of the form H(x) = y where H(x) is a term in the form of

k
∑

i=0

mif
i(x),(4.1)

for some mi ∈ Z; we will refer to these integers as coefficients of H(x).

Definition 4.1. An L-formula ϕ(x1, . . . , xn; y) is called algebraic if it is equivalent to a formula

of the following form

H1(x1) + . . .+Hn(xn) = y,

where H1(x1), . . . , Hn(xn) are L-terms each in the form of (4.1).

4.1. One variable.

For an algebraic formula H(x) = c we add an axiom, among others, expressing the fact that

there is a natural number KH such that one in each KH consecutive elements belongs to the

range of H(x). Assuming M2 |= H(a) = c where c belongs to a submodel M1, the mentioned

axiom helps find an approximate solution a+ j in M1 for some j less than KH .

Lemma 4.2. Let H(x) be a term in the form of (4.1). Then, there exists a minimal natural

number KH , depending on coefficients appearing in (4.1), such that the following formulas hold
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in Zα:

∀x

(

KH
∨

j=0

H(−x) = −H(x)− j

)

,(4.2)

∀x1x2

(

KH
∨

j=0

H(x1 + x2) = H(x1) +H(x2) + j

)

,(4.3)

∀x1x2

(

KH
∨

j=0

H(x2) = H(x1) + j →
KH
∨

j=0

|x2 − x1| = j

)

,(4.4)

∀y∃x

(

KH
∨

j=0

H(x) = y + j

)

.(4.5)

Proof. Formulas (4.2), (4.3) and (4.4) can be proved by a double induction on the length of

H(x) and the greatest power of f which appears in it; the base case for (4.2) is obtained by the

fact that f(−x) = −f(x) − 1 for any integer x, and for Formulas (4.3) and (4.4) one needs to

use part (1) of Lemma 2.1.

Formula (4.5) can be proved using (4.3) and an induction on y. �

Axiom scheme 4. All instances of Formulas (4.2), (4.3), (4.4) and (4.5) for all H(x) and KH

as described in Lemma 4.2.

Lemma 4.3. Let M1 ⊆ M2 be models of Tnalg together with Axiom scheme 4. Suppose that

b̄, c ∈M1, that Γ(x; ȳ) is a finite set of non-algebraic formulas, and that H(x) is a term in the

form of (4.1). If there is an element a ∈ M2 that satisfies Γ(x; b̄) and H(x) = c, then a belongs

to M1.

Proof. What actually matters is that a satisfies H(x) = c in M2. By (4.5) in Axiom scheme 4,

there exist an integer j ≤ KH and an element a′ ∈M1 such that we have H(a′) = c+ j in M1.

By (4.4) in the same axiom, in M2 we have that |a− a′| = j′ for some j′ ≤ KH . The axioms

of T0 ensure that a is the j′-th successor/predecessor of a′, and this means that a is already a

member of M1. �

4.2. Two variables.

Lemmas 4.4 to 4.6 simply describe how one can take care of certain combinations of L-terms

by means of some non-algebraic formulas like (3.3). These lemmas are easy to verify but are

given in full detail as they form a part of our axiomatization.

Lemma 4.4. Suppose that H(x) and KH are as described in Lemma 4.2. Then, for each

integer j with |j| ≤ KH there is a finite set of parameter-free non-algebraic formulas ∆H(x1x2),
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depending on j and the coefficients appearing in H(x), which determines the exact value of j

in Formula (4.3). In other words, the following formula holds in Zα:

∀x1x2
(

∆H(x1x2) ↔ H(x1 + x2) = H(x1) +H(x2) + j
)

.(4.6)

Axiom scheme 5. All instances of Formula (4.6) where H(x),∆H(x1x2) and j are as appeared

in Lemma 4.4.

Lemma 4.5. Suppose that H1(x) and H2(x) are two terms each in the form of (4.1). Then,

there exist a term H(x) and a natural number KH1,H2
, depending on coefficients appearing in

H1(x) and H2(x), such that the following holds in Zα:

∀x





KH1,H2
∨

j,j′=0

(

H1(H2(x)) = H(x) + j ∧ H2(H1(x)) = H(x) + j′
)



 .(4.7)

Moreover, for any given integers j, j′ with |j|, |j′| ≤ KH1,H2
there exists a finite set of parameter-

free non-algebraic formulas ∆H1,H2
(x), depending on j, j′ and the coefficients appearing in H1(x)

and H2(x), which determines the exact value of j and j′ in (4.7).

Axiom scheme 6. All instances of Formula (4.7) where H1(x), H2(x), H(x) and KH1,H2
are as

described in Lemma 4.5.

Axiom scheme 7. All instances of the following formula where

H1(x), H2(x), H(x), KH1,H2
,∆H1,H2

(x), j and j′ are as appeared in Lemma 4.5:

∀x
(

∆H1,H2
(x) →

(

H1(H2(x)) = H(x) + j ∧H2(H1(x)) = H(x) + j′
))

.

Lemma 4.6. Suppose that H(x) is a term in the form of (4.1), and θ(x; ȳ) is a non-

algebraic formula in the form of (3.1). Then, there are finitely many non-algebraic formulas

θ1(x; ȳ), . . . , θn(x; ȳ), determined by the coefficients appearing in H(x) and θ(x; ȳ), such that

the following holds in Zα:

∀xȳ

(

θ
(

H(x); ȳ
)

↔
n
∨

i=0

θi(x; ȳ)

)

.(4.8)

Axiom scheme 8. All instances of Formula (4.8) where θ(x; ȳ), θ1(x; ȳ), . . . , θn(x; ȳ) and H(x)

are as appeared in Lemma 4.6.

The following lemma forms our main technical step in solving systems involving more than

one variable and consisting of at least one algebraic formula. It shows how a finite set of non-

algebraic formulas constrained with a single algebraic formula can turn into a non-algebraic

system of a smaller number of variables (which was already handled in Section 3). This is

actually done in the expense of adding an extra parameter, the element a in the following
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lemma, which is obtained in the preimage of a new term H(x) and from the parameters already

available in the system.

For the sake of precision, the proof of the following lemma is detailed and involves a heavy

use of notation. But the following general idea makes pursuing the proof easier: Assume that

a finite set of non-algebraic formulas Γ(x1x2; b̄) is given alongside with an algebraic equation

H1(x1) +H2(x2) = c. We will first turn the latter into an equation H(x1 + x2) = c′, and then

to an equation x1 + x2 = a. Finally we replace x2 in Γ with a − x1, and we will finish with a

totally non-algebraic system with a single variable.

Lemma 4.7 (Technical Trick).

Let M be a model of Tnalg together with Axiom schemes 4-8. Suppose that b̄, c ∈ M , that

Γ(x1x2; b̄) is a finite set of non-algebraic formulas, and that H1(x1) and H2(x2) are two terms

in the form of (4.1).

Then, there exist

(i) a term H(x) in the form of (4.1),

(ii) an element a ∈M and an integer J with H(a) = c+ J , and

(iii) finitely many finite sets of non-algebraic formulas Γ1(x; ab̄), . . . ,Γn(x; ab̄),

such that satisfiability of Γ(x1x2; b̄) ∪
{

H1(x1) +H2(x2) = c
}

in M is equivalent to

∃x

(

n
∨

i=0

Γi(x; ab̄)

)

.(4.9)

Proof. Suppose that a1, a2 ∈M are some elements satisfying

Γ(x1x2; b̄) ∪
{

H1(x1) +H2(x2) = c
}

.(4.10)

By (4.5) in Axiom 4, there are natural numbers J1 and J2, with J1 ≤ KH1
and J2 ≤ KH2

,

and elements a′1, a
′
2 ∈M such that we have

a1 = H2(a
′
1)− J2 and a2 = H1(a

′
2)− J1.

Hence, we have that

H1(H2(a
′
1)− J2) +H2(H1(a

′
2)− J1) = c.(4.11)

Using Axiom 5 and by applying Lemma 4.4, there are finite sets of non-algebraic formulas

∆1
H1
(x1) and ∆2

H2
(x2) which determine the exact value of the integers j1 and j2 below

{

H1(H2(a
′
1)− J2) = H1(H2(a

′
1))−H1(J2) + j1,

H2(H1(a
′
2)− J1) = H2(H1(a

′
2))−H2(J1) + j2.

Hence, (4.11) turns into

H1(H2(a
′
1))−H1(J2) + j1 +H2(H1(a

′
2))−H2(J1) + j2 = c.(4.12)
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Note that ∆1
H1
(x1) and ∆2

H2
(x2) are respectively a finite fragment of the non-algebraic type–over

the empty set–of H2(a
′
1) and H1(a

′
2) in M.

By applying Lemma 4.5 and by using Axioms 6 and 7, there are finite sets of non-algebraic

formulas ∆3
H1,H2

(x1) and ∆4
H1,H2

(x2) which determine the exact value of the integers j3 and j4
in the following formulas

{

H(a′1) = H1(H2(a
′
1)) + j3,

H(a′2) = H2(H1(a
′
2)) + j4,

where H(x) denotes the term obtained in Lemma 4.5. This turns (4.12) into

H(a′1) +H(a′2) = c+H1(J2)− j1 + j3 +H2(J1)− j2 + j4.(4.13)

Again, note that ∆3
H1,H2

(x1) and ∆4
H1,H2

(x2) are respectively a finite fragment of the non-

algebraic type–over the empty set–of a′1 and a′2 in M.

By applying Lemma 4.4 and Axiom 5 once again, there is a finite set of non-algebraic formulas

∆5
H(x1x2) which determines the exact value of the integer j5 in the formula below

H(a′1 + a′2) = H(a′1) +H(a′2) + j5.

Hence, using (4.13), we have that

H(a′1 + a′2) = c+H1(J2)− j1 + j3 +H2(J1)− j2 + j4 + j5.

Note that ∆5
H(x1x2) is a finite fragment of the non-algebraic type–over the empty set–of the

binary tuple (a′1, a
′
2) in M. Let

{

a := a′1 + a′2,

J := H1(J2) +H2(J1)− j1 − j2 + j3 + j4 + j5.

Also, let x be a fresh variable. Then, the problem of satisfying (4.10) in M is equivalent to

finding an element which satisfies

Γ
(

H2(x)− J2, H1(a− x)− J1; b̄
)

∪

∆1
H1

(

H2(x)
)

∪∆2
H2

(

H1(a− x)
)

∪

∆3
H1,H2

(x) ∪∆4
H1,H2

(a− x)∪

∆5
H(x, a− x).

(4.14)

Since if d ∈M is a solution for (4.14), we can let the following elements serve as a solution for

(4.10):
{

a1 := H2(d)− J2,

a2 := H1(a− d)− J1.
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By Lemma 4.6 and Axiom 8, there exist finite sets of non-algebraic formulas

Γ1(x; ab̄), . . . ,Γn(x; ab̄) such that the conjunction of the formulas in (4.14) is equivalent to
n
∨

i=0

Γi(x; ab̄).

�

Lemma 4.8. Suppose that M1 ⊆ M2 are models of Tnalg together with Axiom schemes 4-8.

Then, by the same assumption as in Lemma 4.7 with M replaced by M1, the following set of

formulas is satisfiable in M2 if and only if it is satisfiable in M1:

Γ(x1x2; b̄) ∪
{

H1(x1) +H2(x2) = c
}

.(4.15)

Proof. By applying Lemma 4.7 for M2, there are a ∈M2, a term H(x) ∈ L, an integer J with

H(a) = c + J , and finitely many sets of non-algebraic formulas Γ1(x; ab̄), . . . ,Γn(x; ab̄) such

that satisfiability of the set of formulas (4.15) in M2 is equivalent to a disjunction in the form

of (4.9). Assuming (4.15) is satisfiable in M2, at least one of the mentioned sets, say Γi(x; ab̄),

is satisfiable in M2.

Since c + J is an element of M1, we can use Lemma 4.3 to conclude that a is a member of

M1 as well. Hence, by Theorem 3.9, the set of formulas (4.15) is also satisfiable in M1.

�

Remark 4.9. The content of Lemma 4.7 can be expressed by the first-order L-formula below.

∀ȳz∃w
K
∨

J=−K

(

H(w) = z + J ∧
(

∃x1x2ψ(x1x2; ȳz) ↔ ∃x
n
∨

i=0

Γi(x; ȳw)
)

)

,

whereK ∈ N is determined by Γ(x1x2; ȳ), H1(x1) andH2(x2); and ψ(x1x2; ȳz) is the conjunction

of formulas in (4.10) with b̄ and c replaced by ȳ and z respectively.

4.3. More than two variables.

The techniques and results of previous sections enable us to handle the case of more than

two variables by carefully applying some suitable inductive proofs. For the sake of precision,

the following lemmas are presented without leaving any detail unstated. However, the proofs

are sketched as briefly as possible.

Using a simple induction we can prove the following generalization of Lemma 4.5.

Notation 4.10. Let H1(x), . . . , Hn(x) be some terms each in the form of (4.1). For each

i ∈ {1, . . . , n} the term H∗
i (x) denotes the successive composition of all the terms in the set
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{Hj(x) : j 6= i}. For example, H∗
2 (x) denotes

H1(H3(H4(· · · (Hn(x)) · · · ))).

Lemma 4.11. Suppose that H1(x), . . . , Hn(x) are terms each in the form of (4.1). Then, there

exist a term H(x) and a natural number K = KH1,...,Hn
, depending on coefficients appearing in

H1(x), . . . , Hn(x), such that the following holds in Zα:

∀x





∨

j̄∈K

n
∧

i=1

(

Hi(H
∗
i (x)) = H(x) + ji

)



 ,(4.16)

where j̄ = (j1, . . . , jn) and K = {0, . . . , K}n. Moreover, for any given integers j1, . . . , jn with

|j1|, . . . , |jn| ≤ K there exists a finite set of parameter-free non-algebraic formulas ∆(x) =

∆H1,...,Hn
(x), depending on j1, . . . , jn and the coefficients appearing in H1(x), . . . , Hn(x), such

that Zα satisfies

∀x

(

∆(x) →
n
∧

i=1

(

Hi(H
∗
i (x)) = H(x) + ji

)

)

.(4.17)

Axiom scheme 9. All instances of Formula (4.16) where H1(x), . . . , Hn(x), H(x) and K are

as described in Lemma 4.11.

Axiom scheme 10. All instances of Formula (4.17) where

H1(x), . . . , Hn(x), H(x), K,∆(x), j1, . . . , jn are as appeared in Lemma 4.11.

Lemma 4.12. Let n ∈ N and M be a model of Tnalg together with Axiom schemes 4-8. Suppose

that b̄, c ∈ M , that Γ(x̄; b̄) with |x̄| = n is a finite set of non-algebraic formulas, and that

H1(x1), . . . , Hn(xn) are some terms in the form of (4.1). Then, there exist

(i) a term H(x) in the form of (4.1),

(ii) an element a ∈M and an integer J with H(a) = c+ J , and

(iii) finitely many finite sets of non-algebraic formulas

Γ1(x1 · · ·xn−1; ab̄), . . . ,Γm(x1 · · ·xn−1; ab̄),

such that satisfiability of Γ(x̄; b̄) ∪
{

H1(x1) + · · ·+Hn(xn) = c
}

in M is equivalent to

∃x1 · · ·xn−1

(

m
∨

i=0

Γi(x1 · · ·xn−1; ab̄)

)

.(4.18)

Proof. The proof of this lemma is a generalization of the proof of Lemma 4.7. But we provide

all the details to better clarify the argument.

Suppose that a1, . . . , an ∈ M satisfy

Γ(x1 · · ·xn; b̄) ∪
{

H1(x1) + · · ·+Hn(xn) = c
}

.(4.19)
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By (4.5) in Axiom 4, there are natural numbers J∗
1 , . . . , J

∗
n, with J∗

i ≤ KH∗

i
for each i, and

elements a′1, . . . , a
′
n ∈M such that for each i ∈ {1, . . . , n} we have

ai = H∗
i (a

′
i)− J∗

i .

Hence, we have that

H1(H
∗
1 (a

′
1)− J∗

1 ) + · · ·+Hn(H
∗
n(a

′
n)− J∗

n) = c.(4.20)

Using Axiom 5 and by applying Lemma 4.4, for each i ∈ {1, . . . , n} there is a finite set of

non-algebraic formulas ∆i
Hi
(xi) which determines the exact value of the integer ji below

Hi(H
∗
i (a

′
i)− J∗

i ) = Hi(H
∗
i (a

′
i))−Hi(J

∗
i ) + ji.

Hence, (4.20) turns into
n
∑

i=1

(

Hi(H
∗
i (a

′
i))−Hi(J

∗
i ) + ji

)

= c.(4.21)

Note that each ∆i
Hi
(xi) is a finite fragment of the non-algebraic type–over the empty set–of

H∗
i (a

′
i) in M.

By applying Lemma 4.11 and by using Axioms 9 and 10, for each i ∈ {1, . . . , n} there is a

finite set of non-algebraic formulas ∆i
H1,...,Hn

(xi) which determines the exact value of the integer

j∗i in the following formula

H(a′i) = Hi(H
∗
i (a

′
i)) + j∗i ,

where H(x) denotes the term obtained in Lemma 4.11. This turns (4.21) into
n
∑

i=1

H(a′i) = c+

n
∑

i=1

(

Hi(J
∗
i )− ji + j∗i

)

.(4.22)

Again, note that each ∆i
H1,...,Hn

(xi) is a finite fragment of the non-algebraic type–over the

empty set–of a′i in M.

By applying Lemma 4.4 and Axiom 5 once again, there is a finite set of non-algebraic formulas

∆H(x1 · · ·xn) which determines the exact value of the integer j in the formula below

H(a′1 + . . .+ a′n) =

n
∑

i=1

H(a′i) + j.

Hence, using (4.22), we have that

H(a′1 + . . .+ a′n) = c+

n
∑

i=1

(

Hi(J
∗
i )− ji + j∗i

)

+ j.
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Note that ∆H(x1 · · ·xn) is a finite fragment of the non-algebraic type–over the empty set–of

the tuple a′1 · · · a
′
n in M. Let











a := a′1 + . . .+ a′n,

J :=

n
∑

i=1

(

Hi(J
∗
i )− ji + j∗i

)

+ j.

Let x1, . . . , xn−1 be some fresh variables and for each i ∈ {1, . . . , n− 1} let x∗i denote the term

H∗
i (xi). Then, the problem of satisfying (4.19) in M is equivalent to finding (n − 1)-many

elements which satisfy

Γ
(

x∗1 − J∗
1 , . . . , x

∗
n−1 − J∗

n−1, Hn

(

a−
n−1
∑

i=1

xi
)

− J∗
n; b̄

)

⋃

n−1
⋃

i=1

∆i
Hi

(

x∗i
)

⋃

∆n
Hn

(

H∗
n

(

a−
n−1
∑

i=1

xi
)

)

⋃

n−1
⋃

i=1

∆i
H1,...,Hn

(xi)
⋃

∆n
H1,...,Hn

(

a−
n−1
∑

i=1

xi
)

⋃

∆H

(

x1, . . . , xn−1, a−
n−1
∑

i=1

xi

)

.

(4.23)

For if d1, . . . , dn−1 ∈ M is a solution for (4.23), we can let the following elements serve as a

solution for (4.19):






























a1 := H∗
1 (d1)− J∗

1 ,
...

an−1 := H∗
n−1(dn−1)− J∗

n−1,

an := H∗
n(a−

n−1
∑

i=1

di)− J∗
n.

Lemma 4.6 can be easily generalized to non-algebraic formulas of more than one variables.

Hence, similar to the proof of Lemma 4.7, we can find the sets of non-algebraic formulas

desired by the lemma.

�

Lemma 4.13. With the same assumptions as in Lemma 4.12 with M replaced by M1, the

following set of formulas is satisfiable in M2 if and only if it is satisfiable in M1:

Γ(x1, . . . , xn; b̄) ∪
{

H1(x1) + . . .+Hn(xn) = c
}

.(4.24)

Proof. Similar to the proof of Lemma 4.8. �
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Notation 4.14. Let Tα denote the theory consisting of Tnalg together with the axiom schemes

4 to 8.

Main Theorem 4.15. Tα is a complete, model-complete and decidable theory which axiomatizes

the theory of Zα. Moreover, Tα has the strict order property.

Proof. Model-completeness results from Lemma 4.13. Also, it is easy to verify that the axioms

of Tα are recursively enumerable. Hence, Tα is a complete decidable theory. The strict order

property results from the fact that the dense linear order [αx] < [αy] is definable in Tα . �

Remark 4.16. Simpler forms of the techniques used in this paper are applied, among others,

in [KZ22] to eliminate quantifiers for Tα when α is the golden ratio. In this case, the spe-

cific formula that expresses being in the range of f , namely ∃yf(y) = x, is equivalent to the

quantifier-free formula x = f(f(x)− x+ 1). This is mainly due to the fact that for any integer

x we have f 2(x) = f(x) + x − 1, which in turn holds because of the algebraic dependence

α2 = α + 1. There does not seem to exist an easy way to eliminate quantifiers even for such a

simple formula in the case of a transcendental α.

Remark 4.17. Our proofs in this paper can be checked to show an as-well effective model-

completeness for the theory of Zα. In fact, based on the proofs appeared in Section 3, one

can use the effective quantifier elimination available in the ordered field of reals to effectively

obtain an equivalent quantifier-free formula for any formula of the form ∃x̄θ(x̄; ȳ) where θ(x̄; ȳ)

is non-algebraic. Using formulas (4.3) and (4.4) in Axiom 4, one can effectively find a universal

formula equivalent to ∃xH(x) = y for H(x) a term in the form of (4.1). For an example, when

α equals Euler’s number e the formula ∃x(f(x) = y) is equivalent to

∀x
(

y − 1 6= f(x) ∧ y + 1 6= f(x)
)

.

For systems involving more than one existential variables and containing an algebraic formula,

one can apply the proof of Lemma 4.7 to effectively reduce the number of existential variables.

5. Concluding remarks

5.1. The case of an algebraic α. The techniques used in this paper can be applied to obtain

the same result for an algebraic α. In fact, when α satisfies an equation of a minimal degree

like

αn + kn−1α
n−1 + . . .+ k0 = 0,(5.1)



ADDITIVE INTEGERS WITH A FUNCTION FOR A BEATTY SEQUENCE 21

with integer coefficients, we can use (5.1) to calculate the value of a decimal [αfm(x)], with

m ≥ n, in terms of the decimals

[αf(x)] , . . . ,
[

αfn−1(x)
]

.

At the same time, each term H(x) of the form (4.1) can be assumed to contain powers of f

strictly less than n. Having made the mentioned adjustments, the rest of the argument can

easily be carried out.

5.2. On definable sets. Based on the terminology used in [T08, Section 3.1], there appear

three fundamental types of sets in various areas of mathematics: The “structured” sets, the

“random” sets, and sets of a “hybrid” nature. Below, we make a concise clarification on this

phenomena concerning the definable sets in Zα.

If a power of f does not appear in an existential formula ϕ(x) with a single free variable x,

then the quantifier elimination available in Presburger arithmetic shows that ϕ(x) is actually

describing a congruence class to which x belongs. So in this case, ϕ(x) defines an infinite

arithmetic progression which is a typical example of a “structured” set by having a completely

predictable behaviour.

On the contrary, Connell proved in [C60, Theorem 2] that no Beatty sequence with an

irrational modulo can contain an infinite arithmetic progression. That is the set of solutions of

a formula like ∃y(x = fn(y)), that forms a typical example of an existential formula containing

a power of f , cannot contain an infinite arithmetic progression. It is not clear to us if the same

fact holds for formulas of the form ∃y(x = f(y) + f 2(y)) that contain an addition of terms; the

latter question might be of interest from the perspective of additive combinatorics.

However in proposition below, and using Theorem 3.1, we prove that in the range of any

term of one variable we can find finite arithmetic progressions of arbitrary large length. This

slightly generalizes a similar result by Connell in [C60, Theorem 2].

Proposition 5.1. Let H(x) =
∑k

i=0mif
i(x). For any natural number n there exists an arith-

metic progression of length n in the range of H in Zα.

Proof. To have an arithmetic progression of length n, it suffices to find x and y such that for

any ℓ ≤ n we have that H(x + ℓy) = H(x) + ℓH(y). And the latter holds whenever there are

integers x and y such that Zα satisfies the following non-algebraic formula for any 1 ≤ i ≤ k

f i(x+ ny) = f i(x) + nf i(y),

or equivalently whenever we have the following for any 0 ≤ i ≤ k − 1

Zα |= 0 <
[

αf i(x)
]

+ n
[

αf i(y)
]

< 1.

But, Theorem 3.1 allows us to find x and y with the desired properties. �
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A similar argument as in the proof of proposition above shows that for an existential for-

mula ϕ(x) of more than one existential variable, the set of solutions ϕ(Zα) contains arithmetic

progressions of arbitrary finite lengths.

The latter observation shows that the formulas containing a power of f behaves more-or-less

similar to prime numbers in that they do not contain infinite arithmetic progression whereas

they do contain arbitrary long finite arithmetic progressions ([GT08]). However, Proposition

1.2 shows that such definable sets may differ from the primes in intersecting each congruence

class at infinitely many points. But it seems reasonable to consider them as hybrid sets in Zα

just like as we do for primes in Z.

To sum up, the structured definable sets in Zα are disjoint-by-finite from the hybrid sets,

and still another interesting phenomena occurs in Zα when we consider two mentioned types of

sets from the perspective of the order topology available in Zα by the formula [αx] < [αy]. In

fact, both the structured and hybrid sets find a uniform description in this topology by being

simultaneously dense and co-dense there.

5.3. A connection to o-minimality. We show that the non-algebraic part of Tα, which we

have denoted by Tnalg in Section 3, gives rise to an o-minimal theory that embodies its main

features.

First for a model M |= Tnalg we associate a structure AM in a language L∗ that contains a

set of predicates meant to capture the non-algebraic content of M.

So let L∗ =
{

<,Pm̄,n̄,ℓ

}

m̄,n̄,ℓ∈Z
where each Pm̄,n̄,ℓ accepts tuples of arity |m̄|+ |n̄|. Fix some

M |= Tnalg and let AM be the subset of (possibly non-standard) reals defined as

AM :=
{

[αa]
∣

∣a ∈ M
}

.

For [αa1] , . . . , [αb1] , . . . ∈ AM, we let Pm̄,n̄,ℓ([αa1] , . . . , [αb1] , . . .) hold in AM if and only if

M |=
∑

mi [αai] <
∑

ni [αbi] + ℓ.(5.2)

Note in particular that P1̄,1̄,0([αa] , [αb]) holds in AM if and only if

M |= [αa] < [αb] .

That is, P1̄,1̄,0 coincides with the relation < in AM. Hence by Axiom 1 this predicate defines a

dense linear ordering on AM.

Towards introducing T ∗, we keep using the notation [αx] for elements of an arbitrary L∗-

structure A. Also, for simplicity and particularly in axiom schemes (2) and (3) below, we keep

thinking of predicates Pm̄,n̄,l as if they are reflecting the content of the inequality appeared in

(5.2), while we carefully have this reservation in mind that an expression like
∑

mi [αai] is, by

itself, just meaningless in T ∗ and does not refer to an actual point.
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Let T ∗ be the theory that describes the following:

(1) The relation < is a dense linear order.

(2) The predicates Pm̄,n̄,ℓ are consistent with the usual addition and ordering of real numbers.

That is T ∗ describes how elements can be moved from each side of (5.2) to the other.

For example if P2,1̄,0(a, c) holds, then we have that P1,1,−1,0(a, c, a). This example reflects

the content of the fact that 2[αa] < [αc] implies [αa] < [αc]− [αa] in real numbers.

(3) If
∑

mi [αai] <
∑

ni [αbi] + ℓ < 1 then there is [αx] such that

∑

mi [αai] < [αx] <
∑

ni [αbi] + ℓ.

Because of the density enforced on the predicates of L∗ by the axioms (1) and (3) above, it

is easy to verify the following proposition.

Proposition 5.2. T ∗ admits quantifier elimination in L∗.

Now, for some model M |= Tnalg it is easy to see that the associated AM is a model of T ∗.

On the other hand, T ∗ is similar to an o-minimal theory in the sense that any set defined by a

formula ϕ(x, āb̄) is a finite union of intervals of the form below
{

x :
∑

mi [αai] < m [αx] <
∑

ni [αbi] + ℓ
}

.

But, as mentioned earlier, the endpoints of this interval are not some actual points in an

arbitrary model of T ∗. However, in each of the structures AM these endpoints turn out to be

elements of the form [αa]. Moreover, at the expense of adding/subtracting an integer value

to/from ℓ, we can write m [αx] as [mαx] or equivalently as [αz] for some z in M. That is, each

L∗-formula ϕ(x, āb̄) becomes equivalent to a finite disjunction of formulas of the form below in

AM:

[αa] < [αx] < [αb] .

Hence for any models M,N |= Tnalg the two associated structures AM and AN are elementary

equivalent since we are able to form a back-and-forth system between them. In other words,

there exists a completion of T ∗ that is o-minimal and is determined by Tnalg.

We finish by posing the following question which is seemingly a natural continuation of the

results appeared in this paper:

Question. Is the structure 〈Z, <,+,−, 0, 1, f〉, which is Zα augmented by the usual ordering

of integers, decidable? Is it model-complete? Or, does it admit quantifier elimination in a

naturally expanded language?
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